零点看书

字:
关灯 护眼
零点看书 > 属性无限暴涨,我横压多元 > 第587章超越ω级,层层序数(提示,本章略复杂)

第587章超越ω级,层层序数(提示,本章略复杂)

第587章超越ω级,层层序数(提示,本章略复杂) (第1/2页)

在【超限序数】这一数学理论体系中,存在着所谓的三类条件。
  
  一、反自反:
  
  即,如果a≤b,且b≤a,则a=b。
  
  二、传递性:
  
  即,如果a≤b,且b≤c,则a≤c。
  
  三、完备性:
  
  若a≤b或者b≤a,那么便不存在无法比较的情况。
  
  事实上,一切知性生灵所知的自然数范畴到实数范畴内的‘≤’都符合这些性质。
  
  这些性质,也正是奠定各类集合间【全序关系】的基础。
  
  至于所谓的全序关系,便是集合层面上的比大小操作。(详见580章)
  
  任意两个良序集合,假若可以建立一一对应关系。
  
  那么,就可以说其是【同序数】。
  
  其实不仅仅是序数,在庞大的数学领域中,亦存在着大量类似通过某种一一对应的变换,来建立两个对象性质相似性的定义。
  
  其名称,也与‘同序数’这一概念颇为近似。
  
  譬如同构,同态等等等等。
  
  如果要将【同序数】这一概念,再进行一番更为细致也更为形象的比喻性描述,那么就可以用【银河霸主】这一大境界来作例子。
  
  在银河霸主大境之中,若以实力高低为凭,从最低的一阶开始一路往上数。
  
  二阶、三阶、四阶……一直数到最高的十阶顶尖霸主。
  
  那么这套力量等级体系,就共计拥有十个阶数。
  
  其按照实力高低,从小到大就构成了一个良序集。(良序集定义详见580章)
  
  与此同时,自然数从1到10也能构成一个良序集。
  
  显然,银河霸主一~十阶,与自然数1~10,是可以一一对应的。
  
  并且这两者的对应结构,也是保持了顺序的。
  
  所以,就可以说【银河霸主】等级体系,与自然数1到10的这个集合,为【同序数】。
  
  也可以更简单的说成,序数是10。
  
  由此推及到更大的层次,那么全体自然数,显然也能构成一个全序集,或者说一个良序集。
  
  只是,其并非有限集,而是无穷集。
  
  这个无穷集,就是最小的超限序数w,亦是穆苍初登无穷之际的实力层次。
  
  当然,只是祂初登无穷时的层次。
  
  至于现在的穆苍,则早已远远凌驾在了w级数之上不知凡几。
  
  可是w……就已然是切切实实的无穷大。
  
  对于无穷大,还能怎样超越呢?
  
  答案是,可以超越。
  
  只不过,需要打开脑洞,展开一场思维风暴。
  
  开始!
  
  提问,怎样在自然数集合w中,通过增加一个元素,来得到一个更高阶更巨大的超限序数呢?
  
  乍一想,这好像是无法做到的。
  
  因为在自然数集合w中,已经存在了无穷多个元素。
  
  若想要再加入一个元素,同时还要保持w良序集的性质,这又该往哪里加呢?
  
  先不要思考答案,可以将这个问题翻转一下。
  
  翻转之后即是……能否从全体自然数w中,拿走足够多的元素,用来构造一个更小的无穷序数呢?
  
  只要稍微思考一下,便会知晓这一问题和【希尔伯特旅馆悖论问题】十分相似,或者说大差不差,都属于是对无穷集合的思考与讨论。
  
  总之,即便从全体自然数集合w中拿走任意多的元素,可只要还剩下无穷多个元素,那么w便还是与全体自然数同序数。
  
  既然问题已经翻转过了,那么现在,就将结论也翻转一次吧。
  
  翻转之后便是,往w中添加任意多元素,是毫无意义的。
  
  即便加了,得到的也依然是与自然数集合同等大小的序数集。
  
  所以,现在应该要怎么做呢?
  
  要怎样做才能突破w,到达那更高阶的无穷大层次呢?
  
  很简单,在全体自然数【末尾】,添加一个元素。
  
  可是,全体自然数有无穷多个,要如何操作,才能在其按照常理根本就不可能存在的所谓【末尾】,添加上一个元素呢?
  
  注意,这就是【超限序数】理论中的关键点。
  
  至关重要!
  
  如果能够理解这一关键点,能够理解如何〖在全体自然数末尾添加一个元素〗这一操作。
  
  那么便能十分容易,甚至可以说是水到渠成的完全理解穆苍现今所在的实力层次。
  
  可若是无法理解。
  
  那么,就将穆苍当成一般的无穷大吧。
  
  因为对一切有限数生灵来说,无论哪一种级别的无穷大,都是没有多大区别的,都是永远无法企及的神之层次。
  
  现在,开始脑洞。
  
  先进行一番思考,为何要在全体自然数【末尾】添加一个元素?
  
  原因,就在于想要得到一个比w更大的超限序数,继而去靠近去理解穆苍所在的层次。
  
  按照序数理论中的定义,序数必须是一个可以顺次排序的良序集。
  
  那么想要‘扩大’一连串已然排列好的全体自然数,当然就只能在其【末尾】,进行元素添加操作。
  
  但是按照原先全体自然数w中自带的比大小方法,显然不可能找到任何一个会比全体自然数都大的数。
  
  因此,这就需要略微修改一下序数理论中有关于【序关系】的定义,继而去寻找另一种比大小的方法,使得突破w这一趟探寻,能够继续进行下去。
  
  于是一直这样探寻下去,不断探寻下去。
  
  最终,便可以发现在那【集合理论】体系中,天然就存在着一种比大小方法。
  
  即是【子集】,或可称【包含】关系。
  
  由此,就可以尝试着将自然数,通过使用【集合】的方法,进行一番再定义。
  
  特别需要说明的是,这种方法在诸多三维宇宙的地球人类文明中,是由博弈论之父和计算机之父——约翰·冯·诺依曼创立出来的。
  
  下面开始进行:
  
  因为最小的集合是空集,那么就可以把0定义为空集。
  
  即:0=?
  
  接着对于1,便可以很自然的定义成拥有一个元素的集合。
  
  这个元素,就是0。
  
  即:1={?}={0}
  
  继续,对于2,亦可以将其定义为:
  
  2={0,1}
  
  对于3,则可以定义为:
  
  3={0,1,2}
  
  由此,不断的类推下去。
  
  那么,就可以最终推论出全体自然数N,便是以0到n-1,共计拥有n个元素的集合。
  
  

(本章未完,请点击下一页继续阅读)
『加入书签,方便阅读』
热门推荐
都市隐龙 我家超市通异界 女神的上门狂婿 神雕之九转阴阳 大航海之仙道 神级高手在都市 寒门巨子 奶包四岁半:下山后七个哥哥团宠我 不科学御兽 隋末之大夏龙雀